BMP180 on arduino pro mini not enough space? D:

7 years 3 months ago - 7 years 3 months ago #544 by EasyIoT

lewys.martin wrote:

EasyIoT wrote: Try to comment #define DEBUG in Esp8266EasyIoTConfig.h file. It will remove all debug code.

comment it ?



EasyIoT wrote: Of course there's room for optimization. This is just sample code and it works on my Arduino Mega 2560 as part of heather thermostat.

I also recommend to optimize code around double pressureSamples[9][6]; You do not need so many samples, because you always calculate average after 6 samples. Array double pressureSamples[6]; is enough, but you need to change code a little bit.




yes I will be trying to optimise this code for weaker arduinos and will share it when finished :)


Try this. It's with smaller array. I've fixed code before I've notice your post.
/*
 V1.0 - first version
 
 Created by Igor Jarc <igor.jarc1@gmail.com>
 See http://iot-playground.com for details
 
 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 version 2 as published by the Free Software Foundation.
 */
#include <Esp8266EasyIoT.h>
#include <SFE_BMP180.h>
#include <Wire.h>


#define ALTITUDE 301.0 // Altitude of my home
#define ESP_RESET_PIN     12

#define MILS_IN_MIN  60000

#define CHILD_ID_TEMP        0
#define CHILD_ID_BARO        1


int minuteCount = 0;
double pressureSamples[6];
double pressureAvg[9];
double dP_dt;

const char *weather[] = {
  "stable","sunny","cloudy","unstable","thunderstorm","unknown"};

int forecast = 5;

unsigned long startTime;

SFE_BMP180 bmp180;
Esp8266EasyIoT esp; 


Esp8266EasyIoTMsg msgTemp(CHILD_ID_TEMP, V_TEMP);
Esp8266EasyIoTMsg msgPress(CHILD_ID_BARO, V_PRESSURE);
Esp8266EasyIoTMsg msgForec(CHILD_ID_BARO, V_FORECAST);

void setup()
{  
  Serial1.begin(9600); // ESP
  Serial.begin(115200); // debug

  if (bmp180.begin())
    Serial.println("BMP180 init success");
   else
     {
    // Oops, something went wrong, this is usually a connection problem,
    // see the comments at the top of this sketch for the proper connections.

    Serial.println("BMP180 init fail\n\n");
    while(1); // Pause forever.
  }
   
   startTime =  -1;
    
  esp.begin(NULL, ESP_RESET_PIN, &Serial1, &Serial);

  esp.present(CHILD_ID_TEMP, S_TEMP);
  esp.present(CHILD_ID_BARO, S_BARO);
}


void loop()
{
  
  for(int i =0; i<10;i++)
  {
    if (esp.process())
      break;
  }
  
  
  if (IsTimeout())
  {
  char status;
  double T,P,p0,a;

  // Loop here getting pressure readings every 60 seconds.

  // If you want sea-level-compensated pressure, as used in weather reports,
  // you will need to know the altitude at which your measurements are taken.
  // We're using a constant called ALTITUDE in this sketch:
  
  // If you want to measure altitude, and not pressure, you will instead need
  // to provide a known baseline pressure. This is shown at the end of the sketch.

  // You must first get a temperature measurement to perform a pressure reading.
  
  // Start a temperature measurement:
  // If request is successful, the number of ms to wait is returned.
  // If request is unsuccessful, 0 is returned.

  status = bmp180.startTemperature();
  if (status != 0)
  {
    // Wait for the measurement to complete:
    delay(status);

    // Retrieve the completed temperature measurement:
    // Note that the measurement is stored in the variable T.
    // Function returns 1 if successful, 0 if failure.

    status = bmp180.getTemperature(T);
    if (status != 0)
    {
      // Print out the measurement:
      Serial.print("temperature: ");
      Serial.print(T,2);
      Serial.print(" deg C, ");
      Serial.print((9.0/5.0)*T+32.0,2);
      Serial.println(" deg F");
      
           
      static int lastSendTempInt;
      int temp = round(T *10);
          
      if (temp != lastSendTempInt)
      {
        lastSendTempInt = temp;      
        esp.send(msgTemp.set((float)T, 1));
      }
            
      // Start a pressure measurement:
      // The parameter is the oversampling setting, from 0 to 3 (highest res, longest wait).
      // If request is successful, the number of ms to wait is returned.
      // If request is unsuccessful, 0 is returned.

      status = bmp180.startPressure(3);
      if (status != 0)
      {
        // Wait for the measurement to complete:
        delay(status);

        // Retrieve the completed pressure measurement:
        // Note that the measurement is stored in the variable P.
        // Note also that the function requires the previous temperature measurement (T).
        // (If temperature is stable, you can do one temperature measurement for a number of pressure measurements.)
        // Function returns 1 if successful, 0 if failure.

        status = bmp180.getPressure(P,T);
        if (status != 0)
        {
          // The pressure sensor returns abolute pressure, which varies with altitude.
          // To remove the effects of altitude, use the sealevel function and your current altitude.
          // This number is commonly used in weather reports.
          // Parameters: P = absolute pressure in mb, ALTITUDE = current altitude in m.
          // Result: p0 = sea-level compensated pressure in mb

          p0 = bmp180.sealevel(P,ALTITUDE); // we're at 1655 meters (Boulder, CO)
          Serial.print("relative (sea-level) pressure: ");
          Serial.print(p0,2);
          Serial.print(" mb, ");
          Serial.print(p0*0.0295333727,2);
          Serial.println(" inHg");
          
          
          static int lastSendPresInt;
          int pres = round(p0 *10);
          
          if (pres != lastSendPresInt)
          {
            lastSendPresInt = pres;      
            esp.send(msgPress.set((float)p0, 1));
          }
          
          forecast = calculateForecast(p0);
          static int lastSendForeInt = -1;
          
      
          if (forecast != lastSendForeInt)
          {
            lastSendForeInt = forecast;      
            esp.send(msgForec.set(weather[forecast]));
          }
        }
        else Serial.println("error retrieving pressure measurement\n");
      }
      else Serial.println("error starting pressure measurement\n");
    }
    else Serial.println("error retrieving temperature measurement\n");
  }
  else Serial.println("error starting temperature measurement\n");

  startTime = millis();  
}

  //delay(5000);  // Pause for 5 seconds.
}

boolean IsTimeout()
{
  unsigned long now = millis();
  if (startTime <= now)
  {
    if ( (unsigned long)(now - startTime )  < MILS_IN_MIN ) 
      return false;
  }
  else
  {
    if ( (unsigned long)(startTime - now) < MILS_IN_MIN ) 
      return false;
  }

  return true;
}


int calculateForecast(double pressure) {
  //From 0 to 5 min.
  if (minuteCount <= 5){
    pressureSamples[minuteCount] = pressure;
  }
  //From 30 to 35 min.
  else if ((minuteCount >= 30) && (minuteCount <= 35)){
    pressureSamples[minuteCount - 30] = pressure;  
  }
  //From 60 to 65 min.
  else if ((minuteCount >= 60) && (minuteCount <= 65)){
    pressureSamples[minuteCount - 60] = pressure;  
  }  
  //From 90 to 95 min.
  else if ((minuteCount >= 90) && (minuteCount <= 95)){
    pressureSamples[minuteCount - 90] = pressure;  
  }
  //From 120 to 125 min.
  else if ((minuteCount >= 120) && (minuteCount <= 125)){
    pressureSamples[minuteCount - 120] = pressure;  
  }
  //From 150 to 155 min.
  else if ((minuteCount >= 150) && (minuteCount <= 155)){
    pressureSamples[minuteCount - 150] = pressure;  
  }
  //From 180 to 185 min.
  else if ((minuteCount >= 180) && (minuteCount <= 185)){
    pressureSamples[minuteCount - 180] = pressure;  
  }
  //From 210 to 215 min.
  else if ((minuteCount >= 210) && (minuteCount <= 215)){
    pressureSamples[minuteCount - 210] = pressure;  
  }
  //From 240 to 245 min.
  else if ((minuteCount >= 240) && (minuteCount <= 245)){
    pressureSamples[minuteCount - 240] = pressure;  
  }


  if (minuteCount == 5) {
    // Avg pressure in first 5 min, value averaged from 0 to 5 min.
    pressureAvg[0] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
  } 
  else if (minuteCount == 35) {
    // Avg pressure in 30 min, value averaged from 0 to 5 min.
    pressureAvg[1] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[1] - pressureAvg[0]);
      dP_dt = change / 5; 
  } 
  else if (minuteCount == 65) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[2] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[2] - pressureAvg[0]);
      dP_dt = change / 10; 
  } 
  else if (minuteCount == 95) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[3] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[3] - pressureAvg[0]);
    dP_dt = change / 15; 
  } 
  else if (minuteCount == 125) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[4] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[4] - pressureAvg[0]);
    dP_dt = change / 20; 
  } 
  else if (minuteCount == 155) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[5] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[5] - pressureAvg[0]);
    dP_dt = change / 25; 
  } 
  else if (minuteCount == 185) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[6] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[6] - pressureAvg[0]);
      dP_dt = change / 30; 
  }
  else if (minuteCount == 215) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[7] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[7] - pressureAvg[0]);
      dP_dt = change / 35; 
  } 
  else if (minuteCount == 245) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[8] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[8] - pressureAvg[0]);
      dP_dt = change / 40; // note this is for t = 4 hour
        
    minuteCount -= 30;
    pressureAvg[0] = pressureAvg[1];
    pressureAvg[1] = pressureAvg[2];
    pressureAvg[2] = pressureAvg[3];
    pressureAvg[3] = pressureAvg[4];
    pressureAvg[4] = pressureAvg[5];
    pressureAvg[5] = pressureAvg[6];
    pressureAvg[6] = pressureAvg[7];
    pressureAvg[7] = pressureAvg[8];
  } 

  minuteCount++;

  if (minuteCount < 36) //if time is less than 35 min 
    return 5; // Unknown, more time needed
  else if (dP_dt < (-0.25))
    return 4; // Quickly falling LP, Thunderstorm, not stable
  else if (dP_dt > 0.25)
    return 3; // Quickly rising HP, not stable weather
  else if ((dP_dt > (-0.25)) && (dP_dt < (-0.05)))
    return 2; // Slowly falling Low Pressure System, stable rainy weather
  else if ((dP_dt > 0.05) && (dP_dt < 0.25))
    return 1; // Slowly rising HP stable good weather
  else if ((dP_dt > (-0.05)) && (dP_dt < 0.05))
    return 0; // Stable weather
  else
    return 5; // Unknown
}

Please Log in or Create an account to join the conversation.

7 years 3 months ago #545 by lewys.martin
I still get not enough space error..

how do i comment out the debug text?

EasyIoT wrote:

lewys.martin wrote:

EasyIoT wrote: Try to comment #define DEBUG in Esp8266EasyIoTConfig.h file. It will remove all debug code.

comment it ?



EasyIoT wrote: Of course there's room for optimization. This is just sample code and it works on my Arduino Mega 2560 as part of heather thermostat.

I also recommend to optimize code around double pressureSamples[9][6]; You do not need so many samples, because you always calculate average after 6 samples. Array double pressureSamples[6]; is enough, but you need to change code a little bit.




yes I will be trying to optimise this code for weaker arduinos and will share it when finished :)


Try this. It's with smaller array. I've fixed code before I've notice your post.
/*
 V1.0 - first version
 
 Created by Igor Jarc <igor.jarc1@gmail.com>
 See http://iot-playground.com for details
 
 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 version 2 as published by the Free Software Foundation.
 */
#include <Esp8266EasyIoT.h>
#include <SFE_BMP180.h>
#include <Wire.h>


#define ALTITUDE 301.0 // Altitude of my home
#define ESP_RESET_PIN     12

#define MILS_IN_MIN  60000

#define CHILD_ID_TEMP        0
#define CHILD_ID_BARO        1


int minuteCount = 0;
double pressureSamples[6];
double pressureAvg[9];
double dP_dt;

const char *weather[] = {
  "stable","sunny","cloudy","unstable","thunderstorm","unknown"};

int forecast = 5;

unsigned long startTime;

SFE_BMP180 bmp180;
Esp8266EasyIoT esp; 


Esp8266EasyIoTMsg msgTemp(CHILD_ID_TEMP, V_TEMP);
Esp8266EasyIoTMsg msgPress(CHILD_ID_BARO, V_PRESSURE);
Esp8266EasyIoTMsg msgForec(CHILD_ID_BARO, V_FORECAST);

void setup()
{  
  Serial1.begin(9600); // ESP
  Serial.begin(115200); // debug

  if (bmp180.begin())
    Serial.println("BMP180 init success");
   else
     {
    // Oops, something went wrong, this is usually a connection problem,
    // see the comments at the top of this sketch for the proper connections.

    Serial.println("BMP180 init fail\n\n");
    while(1); // Pause forever.
  }
   
   startTime =  -1;
    
  esp.begin(NULL, ESP_RESET_PIN, &Serial1, &Serial);

  esp.present(CHILD_ID_TEMP, S_TEMP);
  esp.present(CHILD_ID_BARO, S_BARO);
}


void loop()
{
  
  for(int i =0; i<10;i++)
  {
    if (esp.process())
      break;
  }
  
  
  if (IsTimeout())
  {
  char status;
  double T,P,p0,a;

  // Loop here getting pressure readings every 60 seconds.

  // If you want sea-level-compensated pressure, as used in weather reports,
  // you will need to know the altitude at which your measurements are taken.
  // We're using a constant called ALTITUDE in this sketch:
  
  // If you want to measure altitude, and not pressure, you will instead need
  // to provide a known baseline pressure. This is shown at the end of the sketch.

  // You must first get a temperature measurement to perform a pressure reading.
  
  // Start a temperature measurement:
  // If request is successful, the number of ms to wait is returned.
  // If request is unsuccessful, 0 is returned.

  status = bmp180.startTemperature();
  if (status != 0)
  {
    // Wait for the measurement to complete:
    delay(status);

    // Retrieve the completed temperature measurement:
    // Note that the measurement is stored in the variable T.
    // Function returns 1 if successful, 0 if failure.

    status = bmp180.getTemperature(T);
    if (status != 0)
    {
      // Print out the measurement:
      Serial.print("temperature: ");
      Serial.print(T,2);
      Serial.print(" deg C, ");
      Serial.print((9.0/5.0)*T+32.0,2);
      Serial.println(" deg F");
      
           
      static int lastSendTempInt;
      int temp = round(T *10);
          
      if (temp != lastSendTempInt)
      {
        lastSendTempInt = temp;      
        esp.send(msgTemp.set((float)T, 1));
      }
            
      // Start a pressure measurement:
      // The parameter is the oversampling setting, from 0 to 3 (highest res, longest wait).
      // If request is successful, the number of ms to wait is returned.
      // If request is unsuccessful, 0 is returned.

      status = bmp180.startPressure(3);
      if (status != 0)
      {
        // Wait for the measurement to complete:
        delay(status);

        // Retrieve the completed pressure measurement:
        // Note that the measurement is stored in the variable P.
        // Note also that the function requires the previous temperature measurement (T).
        // (If temperature is stable, you can do one temperature measurement for a number of pressure measurements.)
        // Function returns 1 if successful, 0 if failure.

        status = bmp180.getPressure(P,T);
        if (status != 0)
        {
          // The pressure sensor returns abolute pressure, which varies with altitude.
          // To remove the effects of altitude, use the sealevel function and your current altitude.
          // This number is commonly used in weather reports.
          // Parameters: P = absolute pressure in mb, ALTITUDE = current altitude in m.
          // Result: p0 = sea-level compensated pressure in mb

          p0 = bmp180.sealevel(P,ALTITUDE); // we're at 1655 meters (Boulder, CO)
          Serial.print("relative (sea-level) pressure: ");
          Serial.print(p0,2);
          Serial.print(" mb, ");
          Serial.print(p0*0.0295333727,2);
          Serial.println(" inHg");
          
          
          static int lastSendPresInt;
          int pres = round(p0 *10);
          
          if (pres != lastSendPresInt)
          {
            lastSendPresInt = pres;      
            esp.send(msgPress.set((float)p0, 1));
          }
          
          forecast = calculateForecast(p0);
          static int lastSendForeInt = -1;
          
      
          if (forecast != lastSendForeInt)
          {
            lastSendForeInt = forecast;      
            esp.send(msgForec.set(weather[forecast]));
          }
        }
        else Serial.println("error retrieving pressure measurement\n");
      }
      else Serial.println("error starting pressure measurement\n");
    }
    else Serial.println("error retrieving temperature measurement\n");
  }
  else Serial.println("error starting temperature measurement\n");

  startTime = millis();  
}

  //delay(5000);  // Pause for 5 seconds.
}

boolean IsTimeout()
{
  unsigned long now = millis();
  if (startTime <= now)
  {
    if ( (unsigned long)(now - startTime )  < MILS_IN_MIN ) 
      return false;
  }
  else
  {
    if ( (unsigned long)(startTime - now) < MILS_IN_MIN ) 
      return false;
  }

  return true;
}


int calculateForecast(double pressure) {
  //From 0 to 5 min.
  if (minuteCount <= 5){
    pressureSamples[minuteCount] = pressure;
  }
  //From 30 to 35 min.
  else if ((minuteCount >= 30) && (minuteCount <= 35)){
    pressureSamples[minuteCount - 30] = pressure;  
  }
  //From 60 to 65 min.
  else if ((minuteCount >= 60) && (minuteCount <= 65)){
    pressureSamples[minuteCount - 60] = pressure;  
  }  
  //From 90 to 95 min.
  else if ((minuteCount >= 90) && (minuteCount <= 95)){
    pressureSamples[minuteCount - 90] = pressure;  
  }
  //From 120 to 125 min.
  else if ((minuteCount >= 120) && (minuteCount <= 125)){
    pressureSamples[minuteCount - 120] = pressure;  
  }
  //From 150 to 155 min.
  else if ((minuteCount >= 150) && (minuteCount <= 155)){
    pressureSamples[minuteCount - 150] = pressure;  
  }
  //From 180 to 185 min.
  else if ((minuteCount >= 180) && (minuteCount <= 185)){
    pressureSamples[minuteCount - 180] = pressure;  
  }
  //From 210 to 215 min.
  else if ((minuteCount >= 210) && (minuteCount <= 215)){
    pressureSamples[minuteCount - 210] = pressure;  
  }
  //From 240 to 245 min.
  else if ((minuteCount >= 240) && (minuteCount <= 245)){
    pressureSamples[minuteCount - 240] = pressure;  
  }


  if (minuteCount == 5) {
    // Avg pressure in first 5 min, value averaged from 0 to 5 min.
    pressureAvg[0] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
  } 
  else if (minuteCount == 35) {
    // Avg pressure in 30 min, value averaged from 0 to 5 min.
    pressureAvg[1] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[1] - pressureAvg[0]);
      dP_dt = change / 5; 
  } 
  else if (minuteCount == 65) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[2] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[2] - pressureAvg[0]);
      dP_dt = change / 10; 
  } 
  else if (minuteCount == 95) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[3] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[3] - pressureAvg[0]);
    dP_dt = change / 15; 
  } 
  else if (minuteCount == 125) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[4] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[4] - pressureAvg[0]);
    dP_dt = change / 20; 
  } 
  else if (minuteCount == 155) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[5] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[5] - pressureAvg[0]);
    dP_dt = change / 25; 
  } 
  else if (minuteCount == 185) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[6] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[6] - pressureAvg[0]);
      dP_dt = change / 30; 
  }
  else if (minuteCount == 215) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[7] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[7] - pressureAvg[0]);
      dP_dt = change / 35; 
  } 
  else if (minuteCount == 245) {
    // Avg pressure at end of the hour, value averaged from 0 to 5 min.
    pressureAvg[8] = ((pressureSamples[0] + pressureSamples[1] 
      + pressureSamples[2] + pressureSamples[3]
      + pressureSamples[4] + pressureSamples[5]) / 6);
    float change = (pressureAvg[8] - pressureAvg[0]);
      dP_dt = change / 40; // note this is for t = 4 hour
        
    minuteCount -= 30;
    pressureAvg[0] = pressureAvg[1];
    pressureAvg[1] = pressureAvg[2];
    pressureAvg[2] = pressureAvg[3];
    pressureAvg[3] = pressureAvg[4];
    pressureAvg[4] = pressureAvg[5];
    pressureAvg[5] = pressureAvg[6];
    pressureAvg[6] = pressureAvg[7];
    pressureAvg[7] = pressureAvg[8];
  } 

  minuteCount++;

  if (minuteCount < 36) //if time is less than 35 min 
    return 5; // Unknown, more time needed
  else if (dP_dt < (-0.25))
    return 4; // Quickly falling LP, Thunderstorm, not stable
  else if (dP_dt > 0.25)
    return 3; // Quickly rising HP, not stable weather
  else if ((dP_dt > (-0.25)) && (dP_dt < (-0.05)))
    return 2; // Slowly falling Low Pressure System, stable rainy weather
  else if ((dP_dt > 0.05) && (dP_dt < 0.25))
    return 1; // Slowly rising HP stable good weather
  else if ((dP_dt > (-0.05)) && (dP_dt < 0.05))
    return 0; // Stable weather
  else
    return 5; // Unknown
}

Please Log in or Create an account to join the conversation.

7 years 3 months ago #546 by EasyIoT
Find Esp8266EasyIoTConfig.h and put // before like this:

// #define DEBUG

After that code will compile without debug overhead.

Please Log in or Create an account to join the conversation.

7 years 2 months ago - 7 years 2 months ago #553 by lewys.martin
No eBay APP ID défined in Kunena configuration

EasyIoT wrote: Find Esp8266EasyIoTConfig.h and put // before like this:

// #define DEBUG

After that code will compile without debug overhead.


Sketch uses 21,776 bytes, so we are still over :/

Maybe I will have to buy a mini 2560 based arduino....


like
ebay.com.au/itm/mini-2560-Mega2560-CORE-Arduino-compatible-3-3V-OR-5V-for-Arduino-mega-2560-NEW-/271630756441?pt=LH_DefaultDomain_0&hash=item3f3e746a59

Please Log in or Create an account to join the conversation.

7 years 2 months ago #557 by EasyIoT
Or You can try to remove weather forecast function and keep only air pressure sensor. You can implement weather forecast function in automation on EasyIoT server.

Please Log in or Create an account to join the conversation.

7 years 2 months ago #560 by Xavier

lewys.martin wrote: Sketch uses 21,776 bytes, so we are still over :/

Why do you say it doesn't fit in your ProMini?
22kB < 30kB isn't it?
Of course, without debug option you're blind if it doesn't work, you'll see nothing on Arduino console.
I've no Esp2866 myself but ProMini 16M and when I compile the EasIot latest code, into Arduino 1.05r2 GUI, with your Serial1 changes I get 23.294 bytes and I can load this code into the ProMini with no error. How do you know about RAM usage? For this I'm used to use a call to a freeRam() function but it reports on Serial witch is no more available.

Please Log in or Create an account to join the conversation.

Time to create page: 0.300 seconds

Forum latest

  • No posts to display.